2024-11-27 23:22:08 +08:00

489 lines
24 KiB
Python

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
import math
from copy import deepcopy
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
class IOUloss(nn.Module):
def __init__(self, reduction="none", loss_type="iou"):
super(IOUloss, self).__init__()
self.reduction = reduction
self.loss_type = loss_type
def forward(self, pred, target):
assert pred.shape[0] == target.shape[0]
pred = pred.view(-1, 4)
target = target.view(-1, 4)
tl = torch.max(
(pred[:, :2] - pred[:, 2:] / 2), (target[:, :2] - target[:, 2:] / 2)
)
br = torch.min(
(pred[:, :2] + pred[:, 2:] / 2), (target[:, :2] + target[:, 2:] / 2)
)
area_p = torch.prod(pred[:, 2:], 1)
area_g = torch.prod(target[:, 2:], 1)
en = (tl < br).type(tl.type()).prod(dim=1)
area_i = torch.prod(br - tl, 1) * en
area_u = area_p + area_g - area_i
iou = (area_i) / (area_u + 1e-16)
if self.loss_type == "iou":
loss = 1 - iou ** 2
elif self.loss_type == "giou":
c_tl = torch.min(
(pred[:, :2] - pred[:, 2:] / 2), (target[:, :2] - target[:, 2:] / 2)
)
c_br = torch.max(
(pred[:, :2] + pred[:, 2:] / 2), (target[:, :2] + target[:, 2:] / 2)
)
area_c = torch.prod(c_br - c_tl, 1)
giou = iou - (area_c - area_u) / area_c.clamp(1e-16)
loss = 1 - giou.clamp(min=-1.0, max=1.0)
if self.reduction == "mean":
loss = loss.mean()
elif self.reduction == "sum":
loss = loss.sum()
return loss
class YOLOLoss(nn.Module):
def __init__(self, num_classes, fp16, strides=[8, 16, 32]):
super().__init__()
self.num_classes = num_classes
self.strides = strides
self.bcewithlog_loss = nn.BCEWithLogitsLoss(reduction="none")
self.iou_loss = IOUloss(reduction="none")
self.grids = [torch.zeros(1)] * len(strides)
self.fp16 = fp16
def forward(self, inputs, labels=None):
outputs = []
x_shifts = []
y_shifts = []
expanded_strides = []
#-----------------------------------------------#
# inputs [[batch_size, num_classes + 5, 20, 20]
# [batch_size, num_classes + 5, 40, 40]
# [batch_size, num_classes + 5, 80, 80]]
# outputs [[batch_size, 400, num_classes + 5]
# [batch_size, 1600, num_classes + 5]
# [batch_size, 6400, num_classes + 5]]
# x_shifts [[batch_size, 400]
# [batch_size, 1600]
# [batch_size, 6400]]
#-----------------------------------------------#
for k, (stride, output) in enumerate(zip(self.strides, inputs)):
output, grid = self.get_output_and_grid(output, k, stride)
x_shifts.append(grid[:, :, 0])
y_shifts.append(grid[:, :, 1])
expanded_strides.append(torch.ones_like(grid[:, :, 0]) * stride)
outputs.append(output)
return self.get_losses(x_shifts, y_shifts, expanded_strides, labels, torch.cat(outputs, 1))
def get_output_and_grid(self, output, k, stride):
grid = self.grids[k]
hsize, wsize = output.shape[-2:]
if grid.shape[2:4] != output.shape[2:4]:
yv, xv = torch.meshgrid([torch.arange(hsize), torch.arange(wsize)])
grid = torch.stack((xv, yv), 2).view(1, hsize, wsize, 2).type(output.type())
self.grids[k] = grid
grid = grid.view(1, -1, 2)
output = output.flatten(start_dim=2).permute(0, 2, 1)
output[..., :2] = (output[..., :2] + grid.type_as(output)) * stride
output[..., 2:4] = torch.exp(output[..., 2:4]) * stride
return output, grid
def get_losses(self, x_shifts, y_shifts, expanded_strides, labels, outputs):
#-----------------------------------------------#
# [batch, n_anchors_all, 4]
#-----------------------------------------------#
bbox_preds = outputs[:, :, :4]
#-----------------------------------------------#
# [batch, n_anchors_all, 1]
#-----------------------------------------------#
obj_preds = outputs[:, :, 4:5]
#-----------------------------------------------#
# [batch, n_anchors_all, n_cls]
#-----------------------------------------------#
cls_preds = outputs[:, :, 5:]
total_num_anchors = outputs.shape[1]
#-----------------------------------------------#
# x_shifts [1, n_anchors_all]
# y_shifts [1, n_anchors_all]
# expanded_strides [1, n_anchors_all]
#-----------------------------------------------#
x_shifts = torch.cat(x_shifts, 1).type_as(outputs)
y_shifts = torch.cat(y_shifts, 1).type_as(outputs)
expanded_strides = torch.cat(expanded_strides, 1).type_as(outputs)
cls_targets = []
reg_targets = []
obj_targets = []
fg_masks = []
num_fg = 0.0
for batch_idx in range(outputs.shape[0]):
num_gt = len(labels[batch_idx])
if num_gt == 0:
cls_target = outputs.new_zeros((0, self.num_classes))
reg_target = outputs.new_zeros((0, 4))
obj_target = outputs.new_zeros((total_num_anchors, 1))
fg_mask = outputs.new_zeros(total_num_anchors).bool()
else:
#-----------------------------------------------#
# gt_bboxes_per_image [num_gt, num_classes]
# gt_classes [num_gt]
# bboxes_preds_per_image [n_anchors_all, 4]
# cls_preds_per_image [n_anchors_all, num_classes]
# obj_preds_per_image [n_anchors_all, 1]
#-----------------------------------------------#
gt_bboxes_per_image = labels[batch_idx][..., :4].type_as(outputs)
gt_classes = labels[batch_idx][..., 4].type_as(outputs)
bboxes_preds_per_image = bbox_preds[batch_idx]
cls_preds_per_image = cls_preds[batch_idx]
obj_preds_per_image = obj_preds[batch_idx]
gt_matched_classes, fg_mask, pred_ious_this_matching, matched_gt_inds, num_fg_img = self.get_assignments(
num_gt, total_num_anchors, gt_bboxes_per_image, gt_classes, bboxes_preds_per_image, cls_preds_per_image, obj_preds_per_image,
expanded_strides, x_shifts, y_shifts,
)
torch.cuda.empty_cache()
num_fg += num_fg_img
cls_target = F.one_hot(gt_matched_classes.to(torch.int64), self.num_classes).float() * pred_ious_this_matching.unsqueeze(-1)
obj_target = fg_mask.unsqueeze(-1)
reg_target = gt_bboxes_per_image[matched_gt_inds]
cls_targets.append(cls_target)
reg_targets.append(reg_target)
obj_targets.append(obj_target.type(cls_target.type()))
fg_masks.append(fg_mask)
cls_targets = torch.cat(cls_targets, 0)
reg_targets = torch.cat(reg_targets, 0)
obj_targets = torch.cat(obj_targets, 0)
fg_masks = torch.cat(fg_masks, 0)
num_fg = max(num_fg, 1)
loss_iou = (self.iou_loss(bbox_preds.view(-1, 4)[fg_masks], reg_targets)).sum()
loss_obj = (self.bcewithlog_loss(obj_preds.view(-1, 1), obj_targets)).sum()
loss_cls = (self.bcewithlog_loss(cls_preds.view(-1, self.num_classes)[fg_masks], cls_targets)).sum()
reg_weight = 5.0
loss = reg_weight * loss_iou + loss_obj + loss_cls
return loss / num_fg
@torch.no_grad()
def get_assignments(self, num_gt, total_num_anchors, gt_bboxes_per_image, gt_classes, bboxes_preds_per_image, cls_preds_per_image, obj_preds_per_image, expanded_strides, x_shifts, y_shifts):
#-------------------------------------------------------#
# fg_mask [n_anchors_all]
# is_in_boxes_and_center [num_gt, len(fg_mask)]
#-------------------------------------------------------#
fg_mask, is_in_boxes_and_center = self.get_in_boxes_info(gt_bboxes_per_image, expanded_strides, x_shifts, y_shifts, total_num_anchors, num_gt)
#-------------------------------------------------------#
# fg_mask [n_anchors_all]
# bboxes_preds_per_image [fg_mask, 4]
# cls_preds_ [fg_mask, num_classes]
# obj_preds_ [fg_mask, 1]
#-------------------------------------------------------#
bboxes_preds_per_image = bboxes_preds_per_image[fg_mask]
cls_preds_ = cls_preds_per_image[fg_mask]
obj_preds_ = obj_preds_per_image[fg_mask]
num_in_boxes_anchor = bboxes_preds_per_image.shape[0]
#-------------------------------------------------------#
# pair_wise_ious [num_gt, fg_mask]
#-------------------------------------------------------#
pair_wise_ious = self.bboxes_iou(gt_bboxes_per_image, bboxes_preds_per_image, False)
pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8)
#-------------------------------------------------------#
# cls_preds_ [num_gt, fg_mask, num_classes]
# gt_cls_per_image [num_gt, fg_mask, num_classes]
#-------------------------------------------------------#
if self.fp16:
with torch.cuda.amp.autocast(enabled=False):
cls_preds_ = cls_preds_.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() * obj_preds_.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
gt_cls_per_image = F.one_hot(gt_classes.to(torch.int64), self.num_classes).float().unsqueeze(1).repeat(1, num_in_boxes_anchor, 1)
pair_wise_cls_loss = F.binary_cross_entropy(cls_preds_.sqrt_(), gt_cls_per_image, reduction="none").sum(-1)
else:
cls_preds_ = cls_preds_.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() * obj_preds_.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
gt_cls_per_image = F.one_hot(gt_classes.to(torch.int64), self.num_classes).float().unsqueeze(1).repeat(1, num_in_boxes_anchor, 1)
pair_wise_cls_loss = F.binary_cross_entropy(cls_preds_.sqrt_(), gt_cls_per_image, reduction="none").sum(-1)
del cls_preds_
cost = pair_wise_cls_loss + 3.0 * pair_wise_ious_loss + 100000.0 * (~is_in_boxes_and_center).float()
num_fg, gt_matched_classes, pred_ious_this_matching, matched_gt_inds = self.dynamic_k_matching(cost, pair_wise_ious, gt_classes, num_gt, fg_mask)
del pair_wise_cls_loss, cost, pair_wise_ious, pair_wise_ious_loss
return gt_matched_classes, fg_mask, pred_ious_this_matching, matched_gt_inds, num_fg
def bboxes_iou(self, bboxes_a, bboxes_b, xyxy=True):
if bboxes_a.shape[1] != 4 or bboxes_b.shape[1] != 4:
raise IndexError
if xyxy:
tl = torch.max(bboxes_a[:, None, :2], bboxes_b[:, :2])
br = torch.min(bboxes_a[:, None, 2:], bboxes_b[:, 2:])
area_a = torch.prod(bboxes_a[:, 2:] - bboxes_a[:, :2], 1)
area_b = torch.prod(bboxes_b[:, 2:] - bboxes_b[:, :2], 1)
else:
tl = torch.max(
(bboxes_a[:, None, :2] - bboxes_a[:, None, 2:] / 2),
(bboxes_b[:, :2] - bboxes_b[:, 2:] / 2),
)
br = torch.min(
(bboxes_a[:, None, :2] + bboxes_a[:, None, 2:] / 2),
(bboxes_b[:, :2] + bboxes_b[:, 2:] / 2),
)
area_a = torch.prod(bboxes_a[:, 2:], 1)
area_b = torch.prod(bboxes_b[:, 2:], 1)
en = (tl < br).type(tl.type()).prod(dim=2)
area_i = torch.prod(br - tl, 2) * en
return area_i / (area_a[:, None] + area_b - area_i)
def get_in_boxes_info(self, gt_bboxes_per_image, expanded_strides, x_shifts, y_shifts, total_num_anchors, num_gt, center_radius = 2.5):
#-------------------------------------------------------#
# expanded_strides_per_image [n_anchors_all]
# x_centers_per_image [num_gt, n_anchors_all]
# x_centers_per_image [num_gt, n_anchors_all]
#-------------------------------------------------------#
expanded_strides_per_image = expanded_strides[0]
x_centers_per_image = ((x_shifts[0] + 0.5) * expanded_strides_per_image).unsqueeze(0).repeat(num_gt, 1)
y_centers_per_image = ((y_shifts[0] + 0.5) * expanded_strides_per_image).unsqueeze(0).repeat(num_gt, 1)
#-------------------------------------------------------#
# gt_bboxes_per_image_x [num_gt, n_anchors_all]
#-------------------------------------------------------#
gt_bboxes_per_image_l = (gt_bboxes_per_image[:, 0] - 0.5 * gt_bboxes_per_image[:, 2]).unsqueeze(1).repeat(1, total_num_anchors)
gt_bboxes_per_image_r = (gt_bboxes_per_image[:, 0] + 0.5 * gt_bboxes_per_image[:, 2]).unsqueeze(1).repeat(1, total_num_anchors)
gt_bboxes_per_image_t = (gt_bboxes_per_image[:, 1] - 0.5 * gt_bboxes_per_image[:, 3]).unsqueeze(1).repeat(1, total_num_anchors)
gt_bboxes_per_image_b = (gt_bboxes_per_image[:, 1] + 0.5 * gt_bboxes_per_image[:, 3]).unsqueeze(1).repeat(1, total_num_anchors)
#-------------------------------------------------------#
# bbox_deltas [num_gt, n_anchors_all, 4]
#-------------------------------------------------------#
b_l = x_centers_per_image - gt_bboxes_per_image_l
b_r = gt_bboxes_per_image_r - x_centers_per_image
b_t = y_centers_per_image - gt_bboxes_per_image_t
b_b = gt_bboxes_per_image_b - y_centers_per_image
bbox_deltas = torch.stack([b_l, b_t, b_r, b_b], 2)
#-------------------------------------------------------#
# is_in_boxes [num_gt, n_anchors_all]
# is_in_boxes_all [n_anchors_all]
#-------------------------------------------------------#
is_in_boxes = bbox_deltas.min(dim=-1).values > 0.0
is_in_boxes_all = is_in_boxes.sum(dim=0) > 0
gt_bboxes_per_image_l = (gt_bboxes_per_image[:, 0]).unsqueeze(1).repeat(1, total_num_anchors) - center_radius * expanded_strides_per_image.unsqueeze(0)
gt_bboxes_per_image_r = (gt_bboxes_per_image[:, 0]).unsqueeze(1).repeat(1, total_num_anchors) + center_radius * expanded_strides_per_image.unsqueeze(0)
gt_bboxes_per_image_t = (gt_bboxes_per_image[:, 1]).unsqueeze(1).repeat(1, total_num_anchors) - center_radius * expanded_strides_per_image.unsqueeze(0)
gt_bboxes_per_image_b = (gt_bboxes_per_image[:, 1]).unsqueeze(1).repeat(1, total_num_anchors) + center_radius * expanded_strides_per_image.unsqueeze(0)
#-------------------------------------------------------#
# center_deltas [num_gt, n_anchors_all, 4]
#-------------------------------------------------------#
c_l = x_centers_per_image - gt_bboxes_per_image_l
c_r = gt_bboxes_per_image_r - x_centers_per_image
c_t = y_centers_per_image - gt_bboxes_per_image_t
c_b = gt_bboxes_per_image_b - y_centers_per_image
center_deltas = torch.stack([c_l, c_t, c_r, c_b], 2)
#-------------------------------------------------------#
# is_in_centers [num_gt, n_anchors_all]
# is_in_centers_all [n_anchors_all]
#-------------------------------------------------------#
is_in_centers = center_deltas.min(dim=-1).values > 0.0
is_in_centers_all = is_in_centers.sum(dim=0) > 0
#-------------------------------------------------------#
# is_in_boxes_anchor [n_anchors_all]
# is_in_boxes_and_center [num_gt, is_in_boxes_anchor]
#-------------------------------------------------------#
is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all
is_in_boxes_and_center = is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor]
return is_in_boxes_anchor, is_in_boxes_and_center
def dynamic_k_matching(self, cost, pair_wise_ious, gt_classes, num_gt, fg_mask):
#-------------------------------------------------------#
# cost [num_gt, fg_mask]
# pair_wise_ious [num_gt, fg_mask]
# gt_classes [num_gt]
# fg_mask [n_anchors_all]
# matching_matrix [num_gt, fg_mask]
#-------------------------------------------------------#
matching_matrix = torch.zeros_like(cost)
#------------------------------------------------------------#
# 选取iou最大的n_candidate_k个点
# 然后求和,判断应该有多少点用于该框预测
# topk_ious [num_gt, n_candidate_k]
# dynamic_ks [num_gt]
# matching_matrix [num_gt, fg_mask]
#------------------------------------------------------------#
n_candidate_k = min(10, pair_wise_ious.size(1))
topk_ious, _ = torch.topk(pair_wise_ious, n_candidate_k, dim=1)
dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
for gt_idx in range(num_gt):
#------------------------------------------------------------#
# 给每个真实框选取最小的动态k个点
#------------------------------------------------------------#
_, pos_idx = torch.topk(cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False)
matching_matrix[gt_idx][pos_idx] = 1.0
del topk_ious, dynamic_ks, pos_idx
#------------------------------------------------------------#
# anchor_matching_gt [fg_mask]
#------------------------------------------------------------#
anchor_matching_gt = matching_matrix.sum(0)
if (anchor_matching_gt > 1).sum() > 0:
#------------------------------------------------------------#
# 当某一个特征点指向多个真实框的时候
# 选取cost最小的真实框。
#------------------------------------------------------------#
_, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
matching_matrix[:, anchor_matching_gt > 1] *= 0.0
matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
#------------------------------------------------------------#
# fg_mask_inboxes [fg_mask]
# num_fg为正样本的特征点个数
#------------------------------------------------------------#
fg_mask_inboxes = matching_matrix.sum(0) > 0.0
num_fg = fg_mask_inboxes.sum().item()
#------------------------------------------------------------#
# 对fg_mask进行更新
#------------------------------------------------------------#
fg_mask[fg_mask.clone()] = fg_mask_inboxes
#------------------------------------------------------------#
# 获得特征点对应的物品种类
#------------------------------------------------------------#
matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
gt_matched_classes = gt_classes[matched_gt_inds]
pred_ious_this_matching = (matching_matrix * pair_wise_ious).sum(0)[fg_mask_inboxes]
return num_fg, gt_matched_classes, pred_ious_this_matching, matched_gt_inds
def is_parallel(model):
# Returns True if model is of type DP or DDP
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
def de_parallel(model):
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP
return model.module if is_parallel(model) else model
def copy_attr(a, b, include=(), exclude=()):
# Copy attributes from b to a, options to only include [...] and to exclude [...]
for k, v in b.__dict__.items():
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
continue
else:
setattr(a, k, v)
class ModelEMA:
""" Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
Keeps a moving average of everything in the model state_dict (parameters and buffers)
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
"""
def __init__(self, model, decay=0.9999, tau=2000, updates=0):
# Create EMA
self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
# if next(model.parameters()).device.type != 'cpu':
# self.ema.half() # FP16 EMA
self.updates = updates # number of EMA updates
self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
for p in self.ema.parameters():
p.requires_grad_(False)
def update(self, model):
# Update EMA parameters
with torch.no_grad():
self.updates += 1
d = self.decay(self.updates)
msd = de_parallel(model).state_dict() # model state_dict
for k, v in self.ema.state_dict().items():
if v.dtype.is_floating_point:
v *= d
v += (1 - d) * msd[k].detach()
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
# Update EMA attributes
copy_attr(self.ema, model, include, exclude)
def weights_init(net, init_type='normal', init_gain = 0.02):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and classname.find('Conv') != -1:
if init_type == 'normal':
torch.nn.init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == 'xavier':
torch.nn.init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == 'kaiming':
torch.nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
torch.nn.init.orthogonal_(m.weight.data, gain=init_gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
elif classname.find('BatchNorm2d') != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
print('initialize network with %s type' % init_type)
net.apply(init_func)
def get_lr_scheduler(lr_decay_type, lr, min_lr, total_iters, warmup_iters_ratio = 0.05, warmup_lr_ratio = 0.1, no_aug_iter_ratio = 0.05, step_num = 10):
def yolox_warm_cos_lr(lr, min_lr, total_iters, warmup_total_iters, warmup_lr_start, no_aug_iter, iters):
if iters <= warmup_total_iters:
# lr = (lr - warmup_lr_start) * iters / float(warmup_total_iters) + warmup_lr_start
lr = (lr - warmup_lr_start) * pow(iters / float(warmup_total_iters), 2) + warmup_lr_start
elif iters >= total_iters - no_aug_iter:
lr = min_lr
else:
lr = min_lr + 0.5 * (lr - min_lr) * (
1.0 + math.cos(math.pi* (iters - warmup_total_iters) / (total_iters - warmup_total_iters - no_aug_iter))
)
return lr
def step_lr(lr, decay_rate, step_size, iters):
if step_size < 1:
raise ValueError("step_size must above 1.")
n = iters // step_size
out_lr = lr * decay_rate ** n
return out_lr
if lr_decay_type == "cos":
warmup_total_iters = min(max(warmup_iters_ratio * total_iters, 1), 3)
warmup_lr_start = max(warmup_lr_ratio * lr, 1e-6)
no_aug_iter = min(max(no_aug_iter_ratio * total_iters, 1), 15)
func = partial(yolox_warm_cos_lr ,lr, min_lr, total_iters, warmup_total_iters, warmup_lr_start, no_aug_iter)
else:
decay_rate = (min_lr / lr) ** (1 / (step_num - 1))
step_size = total_iters / step_num
func = partial(step_lr, lr, decay_rate, step_size)
return func
def set_optimizer_lr(optimizer, lr_scheduler_func, epoch):
lr = lr_scheduler_func(epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr